EE 527 MICROFABRICATION

Lecture 24 Tai-Chang Chen University of Washington

EDP ETCHING OF SILICON - 1

- <u>E</u>thylene <u>D</u>iamine <u>Pyrocatechol</u>
- Anisotropy: (100):(111) ~ 35:1
- EDP is very corrosive, very carcinogenic, and never allowed near mainstream electronic microfabrication.
- Typical etch rates for (100) silicon:
 - 70°C 14 μm/hr
 - 80°C 20 μm/hr
 - 90°C 30 μ m/hr = 0.5 μ m/min
 - 97°C 36 μm/hr

© UWEE TC Chen

 1_{1}

TMAH ETCHING OF SILICON

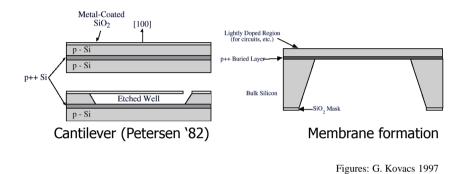
- <u>T</u>etra <u>M</u>ethyl <u>A</u>mmonium <u>Hydroxide</u>
- MOS/CMOS compatible:
 - No alkali metals {Li, Na, K, ...}.
 - TMAH is used in many positive photoresist developers.
 - Does not significantly etch SiO₂ or Al! (Bond wire safe!)
- Anisotropy: (100):(111) ~ 10:1 to 35:1
- Typical recipe:
 - 250 mL TMAH (25% from Aldrich)
 - 375 mL H₂O
 - 22 g Si dust dissolved into solution
 - Use at 90°C
 - Gives about 1 μm/min etch rate

© UWFF TC Chen

tetramethyl ammonium hydroxide (TMAH)

Winter 2014

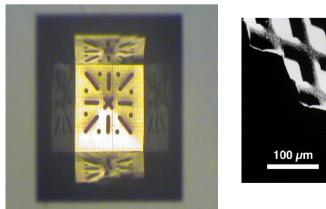
ANISOTROPIC ETCH STOP LAYERS - 1

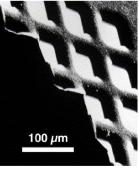

- Controlling the absolute depth of an etch is often difficult, particularly if the etch is going most of the way through a wafer.
- Etch stop layers can be used to drastically slow the etch rate, providing a stopping point of high absolute accuracy.
- Boron doping is most commonly used for silicon etching.
- Requirements for specific etches:
 - HNA etch actually speeds up for heavier doping
 - KOH etch rate reduces by $20 \times$ for boron doping > 10^{20} cm⁻³
 - NaOH etch rate reduces by 10× for boron doping > 3 \times 10^{20} cm^{-3}
 - EDP etch rate reduces by 50× for boron doping > 7 \times 10^{19} $cm^{\text{-3}}$
 - TMAH etch rate reduces by $10 \times$ for boron doping > 10^{20} cm⁻³

© UWEE TC Chen

DOPANT ETCH STOPS

- Many anisotropic etchants slow down markedly at high boron concentrations ($> 10^{20}$ cm⁻³).
- Can diffuse or grow boron-containing epitaxial silicon.

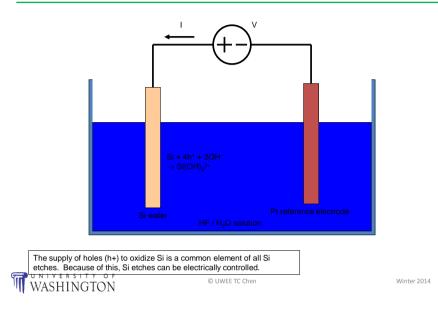



WASHINGTON

© UWEE TC Chen

Autumn 2013

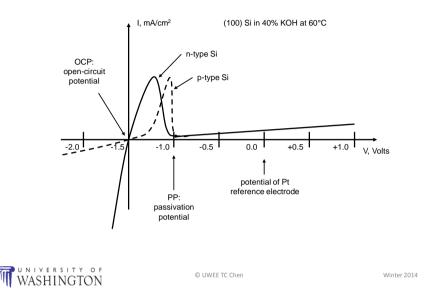
BORON P++ ETCH STOPS


Figures: G. Kovacs 1997

© UWEE TC Chen

Autumn 2013

ELECTROCHEMICAL ETCH EFFECTS - 2

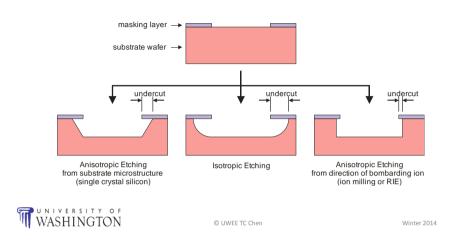

- HF normally etches SiO₂ and terminates on Si.
- By biasing the Si positively, holes can be injected by an external circuit which will oxidize the Si and form hydroxides which the HF can then dissolve.
- This produces an excellent polishing etch that can be very well masked by LPCVD films of Si_3N_4 .
- If the etching is performed in very concentrated HF, then the Si does not fully oxidize when etched, and <u>porous silicon</u> is formed, which appears brownish.
- Porous silicon has some unusual electroluminescent properties: It will glow bright orange under electron injection.

© UWEE TC Chen

44

ELECTROCHEMICAL ETCH EFFECTS - 3

ELECTROCHEMICAL ETCH EFFECTS - 4


- The open circuit potential (OCP) is usually about -1.50 V, varying a bit with temperature and solution concentration.
- Increasing the wafer bias above the OCP will increase the etch rate by supplying holes which will oxidize the Si.
- Increasing the wafer bias further will reach the passivation potential (PP) where SiO₂ forms.
 - This passivates the surface and terminates the etch. The SiO₂ creates an insulating film which drastically reduces the current flow.

© UWEE TC Chen

ETCHING ANISOTROPY

• Etch anisotropy determines the amount of masking layer undercut:

REASONS FOR DRY ETCHING

- Wet release of suspended structures can cause breakage and sticking due to surface tension of liquid pulling surfaces together upon removal.
- Dry etching is carried out at low pressures inside vacuum chambers, so particle contamination is greatly reduced.
- Dry etching is well suited for single wafer processing.
- Dry etching allows for precision end point control.

© UWEE TC Chen

WET ETCHING V.S. DRY ETCHING (1)

- ➤ Wet Etching:
 - use liquid etchants.
 - mostly chemical processes.
 - simple, inexpensive, very selective.
- Plasma Etching/ Dry Etching:
 - use gas-phase etchants in a plasma.
 - combination of physical and chemical processes.
 - (combination of ionic and reactive chemical species)

© UWEE TC Chen

Winter 2014

DRY ETCHING OVERVIEW

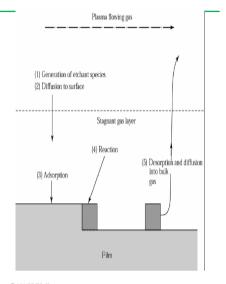
- Dry Chemical etching
 - Chemical etching
- Physically sputtering (ion etching)
 - Sputter etch
- Combination of physical and chemical etching
 - Reactive ion etching (RIE)
 - Deep reactive ion etching (DRIE)
 - Bosch Process

© UWEE TC Chen

DRY ETCH

- Advantages
 - Controlled anisotropic etching of fine features
 - Controlled etch rate
 - Easier to automate
 - Smaller amount of hazardous chemicals
 - Etch chemically resistive chemicals
- Disadvantages
 - Expensive
 - Chemically not well know
 - Chemically less selective

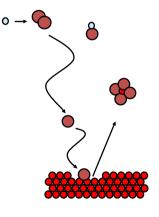
© UWEE TC Chen


Winter 2014

ISOTROPIC DRY ETCHING (11.6)

ETCH MECHANISMS

- Generation of etching species
- Diffusion to surfaces
 - the mechanics of getting to the surface can limit *aspect ratio, undercuttig, uniformity*
- Adsorption
- Reaction
- Desorption
- Diffusion to bulk gas
 - can lead to non-uniform etching due to dilution of unreacted etching species


WASHINGTON

© UWEE TC Chen

Winter 2014

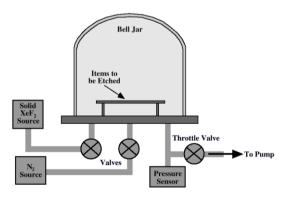
DRY CHEMICAL ETCHING

- Relative high pressure process
- chemically reactive species
 - Diffuse to wafer surface
 - Adsorb onto surface
 - React with surface
 - Reaction by-products desorb and diffuse away
- Isotropic
- High selectivity
- Note: Gaseous by-products can be harmful!

© UWEE TC Chen

XEF₂ STAGNANT GAS PHASE ETCHING

- Silicon is readily etched by noble gas halogens.
- XeF₂ is the most commonly used:
 - 2XeF₂ + Si → 2Xe + SiF₄.
 - XeF₂ is a solid at room temperature which can be sublimated by low pressure (exposure to vacuum).
 - Typically used at a pressure of 1-2 Torr to give Si etch rates of 1-3 $\mu m/min.$
 - Very high selectivity: virtually no etch rate for Al, $\rm{SiO}_2, \rm{Si}_3\rm{N}_4,$ and photoresist.
 - Leaves a very rough surface
 - Exothermic: ~1 W/cm² of heat produced.
 - Samples must be thoroughly dehydrated before etching.
 - − $2XeF_2 + 2H_2O \rightarrow 2Xe + 4HF + 2O_2$. (HF etches SiO₂!)



© UWEE TC Chen

Winter 2014

XEF₂ ETCHING SYSTEM

• Refer to Hoffman, et al., MEMS 1995 Conference.

© UWEE TC Chen

COMMERCIAL XEF₂ ETCHING SYSTEM

XACTIX model X4 system:

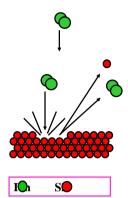
Aluminum cantilevers released using XeF₂ system. (XACTIX & Chad O'Neal, Louisianna Tech. Univ.)

© UWEE TC Chen

Winter 2014

PLASMA EXCITATION

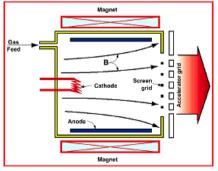
- Because of their low density, most gas phase etching chemistries have rates that are too slow at room temperature.
- Increasing the rate requires exciting the reacting species to form radicals and giving these radicals kinetic energy.
- There exist several ways to achieve this:
 - Direct heating.
 - Electromagnetically coupled energy from an electrical discharge and used to create a plasma state.
- Advantages of plasmas:
 - Electrically controllable with high power efficiencies.
 - Creates free radicals through ionization.
 - Creates high kinetic particle energies without high substrate temperatures.
 - Performed in a vacuum chamber, giving good contamination



© UWEE TC Chen

PHYSICAL ETCHING (SPUTTER)

- Low pressure, long mean free path
- Chemically inert ions (Ar)
 - Ions accelerated by plasma sheath potential towards wafer
 - Substrate atoms are dislodged during collisions (sandblasting)
 - Ion energy > Bonding energy
- Highly anisotropic
- Low selectivity
 - Etches all surfaces equally
- Mask needs 50% thicker than etch depth



ION MILLING SYSTEM

© UWEE TC Chen

- Kaufmann source
 - Use e-beam to strike plasma
 - A magnetic field applied to increase ion density
- Drawback
 - Low etch rate
 - High ion bombardment damage
 - redeposition

© UWEE TC Chen